\qquad

LESSON

Practice

8.1

Find the sum of the measures of the interior angles of the indicated convex polygon.

1. Hexagon
2. Dodecagon
3. 11-gon
4. 15 -gon
5. 20-gon
6. 40 -gon

The sum of the measures of the interior angles of a convex polygon is given. Classify the polygon by the number of sides.
7. 180°
8. 540°
9. 900°
10. 1800°
11. 2520°
14. 5940°
12. 3960°
13. 5040°
15. 8640°
17.

18.

19.

20.

20
21.

16.

Find the value of \boldsymbol{x}.
22. What is the measure of each exterior angle of a regular nonagon?
23. The measures of the exterior angles of a convex quadrilateral are $90^{\circ}, 10 x^{\circ}, 5 x^{\circ}$, and 45°. What is the measure of the largest exterior angle?
24. The measures of the interior angles of a convex octagon are $45 x^{\circ}, 40 x^{\circ}, 155^{\circ}, 120^{\circ}$, $155^{\circ}, 38 x^{\circ}, 158^{\circ}$, and $41 x^{\circ}$. What is the measure of the smallest interior angle?

Find the measures of an interior angle and an exterior angle of the indicated polygon.
25. Regular triangle
26. Regular octagon
27. Regular 16 -gon
28. Regular 45-gon
29. Regular 60 -gon
30. Regular 100-gon
\qquad
8.1

Practice continued
For use with pages 526-533

In Exercises 31-34, find the value of \boldsymbol{n} for each regular \boldsymbol{n}-gon described.

31. Each interior angle of the regular n-gon has a measure of 140°.
32. Each interior angle of the regular n-gon has a measure of 175.2°.
33. Each exterior angle of the regular n-gon has a measure of 45°.
34. Each exterior angle of the regular n-gon has a measure of 3°.
35. Storage Shed The side view of a storage shed is shown below. Find the value of x. Then determine the measure of each angle.

36. Tents The front view of a camping tent is shown below. Find the value of x. Then determine the measure of each angle.

37. Proof Because all the interior angle measures of a regular n-gon are congruent, you can find the measure of each individual interior angle. The measure of each interior angle of a regular n-gon is $\frac{(n-2) \cdot 180}{n}$. Write a paragraph proof to prove this statement.

Name \qquad
\qquad

LESSON
8.2

Practice

For use with pages 535-541
Find the measure of the indicated angle in the parallelogram.

1. Find $m \angle B$.

2. Find $m \angle G$.

3. Find $m \angle M$.

Find the value of each variable in the parallelogram.
4.

5.

6.

7.

8.

9.

10. In $\square W X Y Z, m \angle W$ is 50 degrees more than $m \angle X$. Sketch $\square W X Y Z$. Find the measure of each interior angle. Then label each angle with its measure.

11. In $\square E F G H, m \angle G$ is 25 degrees less than $m \angle H$. Sketch $\square E F G H$. Find the measure of each interior angle. Then label each angle with its measure.

Find the indicated measure in $\square A B C D$.
12. $m \angle A E B$
13. $m \angle B A E$
14. $m \angle A E D$
15. $m \angle E C B$
16. $m \angle B A D$
17. $m \angle D C E$
18. $m \angle A D C$
19. $m \angle D C B$

\qquad
${ }_{8.2}^{\text {LIEson }}$
Practice continued
For use with pages 535-541

Use the diagram of $\square M N O P$. Points Q, R, S, and T are midpoints of $\overline{M X}$, $\overline{\mathbf{N X}}, \overline{\mathbf{O X}}$, and $\overline{\mathbf{P X}}$. Find the indicated measure.
20. $P N$
21. $M Q$
22. $X O$
23. $m \angle N M Q$

24. $m \angle N X O$
25. $m \angle M N P$
26. $m \angle N P O$
27. $m \angle N O P$
28. Movie Equipment The scissor lift shown at the right is sometimes used by camera crews to film movie scenes. The lift can be raised or lowered so that the camera can get a variety of views of one scene. In the figure, points E, F, G, and H are the vertices of a parallelogram.
a. If $m \angle E=45^{\circ}$, find $m \angle F$.
b. What happens to $\angle E$ and $\angle F$ when the lift is raised? Explain.

29. In parallelogram $R S T U$, the ratio of $R S$ to $S T$ is $5: 3$. Find $R S$ if the perimeter of $\square R S T U$ is 64 .
30. Parallelogram $M N O P$ and parallelogram $P Q R O$ share a common side, as shown. Using a two-column proof, prove that segment $M N$ is congruent to segment $Q R$.

GIVEN: $M N O P$ and $P Q R O$ are parallelograms.
PROVE: $\overline{M N} \cong \overline{Q R}$

\qquad

LESSON
8.3

Practice

For use with pages 542-549

What theorem can you use to show that the quadrilateral is a parallelogram?

1.

2.

3.

4.

For what value of x is the quadrilateral a parallelogram?
5.

6.

7.

8.

9.

10.

\qquad
${ }^{\text {Lesson }}$
Practice continued
8.3

For use with pages 542-549
The vertices of quadrilateral $A B C D$ are given. Draw $A B C D$ in a coordinate plane and show that it is a parallelogram.
11. $A(-2,-3), B(0,4), C(6,4), D(4,-3)$

12. $A(-3,-4), B(-1,2), C(7,0), D(5,-6)$

Describe how to prove that $A B C D$ is a parallelogram.
13.

14. A

15. Three vertices of $\square A B C D$ are $A(-1,4), B(4,4)$, and $C(11,-3)$. Find the coordinates of point D.
16. History The diagram shows a battering ram which was used in ancient times to break through walls. A \log is suspended on ropes of equal length ($\overline{G F}$ and $\overline{H J})$. The log swings, causing quadrilateral $F G H J$ to shift. In the diagram, $\overline{G H} \cong \overline{F J}$ and $\overline{G H}$ is parallel to the ground.
a. Identify FGHJ. Explain.
b. Explain why the \log is always parallel to the ground.
17. Proof Use the diagram at the right.

GIVEN: $\triangle A B C \cong \triangle C D A$
PROVE: $A B C D$ is a parallelogram.

\qquad

LESSON

Practice

For use with pages 553-560
For any rhombus $A B C D$, decide whether the statement is always or sometimes true. Draw a diagram and explain your reasoning.

1. $\angle A B C \cong \angle C D A$
2. $\overline{C A} \cong \overline{D B}$

For any rectangle FGHJ, decide whether the statement is always or sometimes true. Draw a diagram and explain your reasoning.
3. $\angle F \cong \angle H$
4. $\overline{G H} \cong \overline{H J}$

Classify the quadrilateral. Explain your reasoning.
5.

6.

Name each quadrilateral-parallelogram, rectangle, rhombus, and square-for which the statement is true.
7. It is equilateral.
8. The diagonals are congruent.
9. It can contain obtuse angles.
10. It contains no acute angles.

Classify the special quadrilateral. Explain your reasoning. Then find the values of \boldsymbol{x} and \boldsymbol{y}.

12.

Name \qquad
LIsson
8.4
Practice continued
8.4

For use with pages 553-560
The diagonals of rhombus PQRS intersect at T.
Given that $\boldsymbol{m} \angle R P S=30^{\circ}$ and $R T=6$, find the indicated measure.
13. $m \angle Q P R$
14. $m \angle Q T P$
15. $R P$
16. $Q T$

The diagonals of rectangle WXYZ intersect at P. Given that $m \angle Y X Z=50^{\circ}$ and $X Z=12$, find the indicated measure.
17. $m \angle W X Z$
18. $m \angle W P X$
19. $P Y$
20. $W X$

The diagonals of square DEFG intersect at \boldsymbol{H}. Given that $E H=5$, find the indicated measure.
21. $m \angle G H F$
22. $m \angle D G H$
23. $H F$
24. $D E$

25. Windows In preparation for a storm, a window is protected by nailing boards along its diagonals. The lengths of the boards are the same. Can you conclude that the window is square? Explain.
26. Clothing The side view of a wooden clothes dryer is shown at the right. Measurements shown are in inches.
a. The uppermost quadrilateral is a square. Classify the quadrilateral below the square. Explain your reasoning.
b. Find the height h of the clothes dryer.

27. Proof The diagonals of rhombus $A B C D$ form several triangles. Using a two-column proof, prove that $\triangle B F A \cong \triangle D F C$.

GIVEN: $A B C D$ is a rhombus.

PROVE: $\triangle B F A \cong \triangle D F C$

Geometry

\qquad

LESSON 8.5

Practice

For use with pages 562-569
Points A, B, C, and D are the vertices of a quadrilateral. Determine whether $A B C D$ is a trapezoid.

1. $A(-2,3), B(3,3), C(-1,-2), D(2,-2)$
2. $A(-3,2), B(3,0), C(4,3), D(-2,5)$
3. $A(-5,-3), B(-1,-1), C(-1,3), D(-3,2)$

Find $m \angle \boldsymbol{F}, \boldsymbol{m} \angle \boldsymbol{G}$, and $\boldsymbol{m} \angle \boldsymbol{H}$.
4.

5.

Find the length of the midsegment of the trapezoid.
6.

7.

$J K L M$ is a kite. Find $m \angle K$.
8.

9.

Use Theorem 8.18 and the Pythagorean Theorem to find the side lengths of the kite. Write the lengths in simplest radical form.
10.

11.

\qquad

Practice
continued
For use with pages 562-569

Find the value of \boldsymbol{x}.

12.

14.

13.

15.

16. Maps Use the map shown at the right. The lines represent a sidewalk connecting the locations on the map.
a. Is the sidewalk in the shape of a kite? Explain.
b. A sidewalk is built that connects the arcade, tennis court, miniature golf course, and restaurant. What is the shape of the sidewalk?

c. What is the length of the midsegment of the sidewalk in part (b)?
17. Kite You cut out a piece of fabric in the shape of a kite so that the congruent angles of the kite are 100°. Of the remaining two angles, one is 4 times larger than the other. What is the measure of the largest angle in the kite?
18. Proof $\overline{M N}$ is the midsegment of isosceles trapezoid $F G H J$. Write a paragraph proof to show that $F M N J$ is an isosceles trapezoid.

\qquad

LESSON
8.6

Practice

For use with pages 570-575

Complete the chart. Put an X in the box if the shape always has the given property.

1.

Property	\square	Rectangle	Rhombus	Square	Kite	Trapezoid
Both pairs of opposite sides are congruent.						
Both pairs of opposite angles are congruent.						
Exactly one pair of opposite sides are congruent.						
Exactly one pair of opposite sides are parallel.						
Exactly one pair of opposite angles are congruent.						
Consecutive angles are supplementary.						

Give the most specific name for the quadrilateral. Explain.
7.

8.

9.

10.

\qquad

Tell whether enough information is given in the diagram to classify the quadrilateral by the indicated name.
11. Rectangle

13. Rhombus

12. Isosceles trapezoid

14. Kite

Points A, B, C, and D are the vertices of a quadrilateral. Give the most specific name for ABCD. Justify your answer.
15. $A(2,2), B(4,6), C(6,5), D(4,1)$
16. $A(-5,1), B(0,-6), C(5,1), D(0,3)$

In Exercises 17 and 18, which two segments or angles must be congruent so that you can prove that FGHJ is the indicated quadrilateral? There may be more than one right answer.
17. Kite

18. Isosceles trapezoid

20. Painting A painter uses a quadrilateral shaped piece of canvas. The artist begins by painting lines that represent the diagonals of the canvas. If the lengths of the painted lines are congruent, what types of quadrilaterals could represent the shape of the canvas? If the painted lines are also perpendicular, what type of quadrilateral represents the shape of the canvas?
\qquad

LESSON
8.7

Practice

For use with pages 576-581
Find the side lengths of quadrilaterals $A B C D$ and $E F G H$ with the given vertices. Then determine if the quadrilaterals are congruent.

1. $A(-2,1), B(-2,5), C(2,5), D(2,1) ; E(-3,-1) F(1,-1), G(1,-5), H(-3,-5)$
2. $A(-5,-1), B(0,-1), C(-2,-3), D(-3,-3) ; E(0,4) F(10,4), G(6,0), H(4,0)$
3. $A(-2,1), B(2,1), C(2,-1), D(-2,-1) ; E(-1,2) F(1,2), G(1,-2), H(-1,-2)$
4. $A(-5,5), B(0,5), C(0,0), D(-5,0) ; E(1,0) F(4,4), G(9,4), H(6,0)$

Find the side lengths of quadrilaterals $A B C D$ and $E F G H$ with the given vertices. Then determine if the quadrilaterals are similar.
5. $A(0,0), \mathrm{B}(3,3), C(6,3), D(9,0) ; E(0,-1) F(6,-1), G(4,-3), H(2,-3)$
6. $A(1,0), B(1,6), C(3,6), D(3,0) ; E(5,0) F(5,9), G(8,9), H(8,0)$
7. $A(-3,0), B(-3,2), C(3,2), D(3,0) ; E(-4,-1) F(-4,3), G(4,3), H(4,-1)$
8. $A(1,0), B(1,1), C(2,1), D(2,0) ; E(0,-1) F(0,2), G(3,2), H(3,-1)$

Without introducing any new variables, supply the missing coordinates.

9.

Square $A B C D$

10. Trapezoid ABCD

In exercises 11-13, use the following information.

Quadrilateral $P Q R S$ shown at the right is a rectangle. The coordinates of P are (a, b) and the length of a short side is x, the length of a long side is twice as long as a short side.
11. Find the coordinates of Q, R, and S.
12. Find the coordinates of the midpoints of the sides of $P Q R S$.

13. Find the coordinates of the center of $P Q R S$.

